

Quantitative Methods Seminar Series in Psychology

Introduction to JASP for Data Analysis

Frederick Anyan, Ph.D.

frederick.anyan@ntnu.no

Personal website

Frederick Anyan, Ph.D - NTNU

- JASP: Downloading, installing, and opening JASP
- Reading data into JASP
- Variables/Data transformations
 - (Re)Naming Variables
 - Setting levels of measurement
 - Computing (Recoding) new variables
- Selecting and filtering cases
- Example Analyses
 - Exploratory and Confirmatory Factor Analyses
 - Multigroup analyses and measurement invariance
 - Mediation modelling
 - Advanced modeling in JASP
 - Longitudinal/Growth models SEM

- JASP: Downloading, installing, and opening JASP
- Reading data into JASP
- Variables/Data transformatic
 - (Re)Naming Variables
 - Setting levels of measuremen
 - Computing (Recoding) new v
- Selecting and filtering cases

Quantitative Methods Seminar Series in Psychology

Frederick Anyan, Ph.D.

frederick.anvan@ntnu.no

Personal website

- Example Analyses
 - Exploratory and Confirmator
 - Multigroup analyses and measu
 - Mediation modelling
 - Advanced modeling in JASP
 - Longitudinal/Growth models –

Longitudinal Data Analysis using Mplus and R

Workshop materials: <u>Mplus users</u> <u>R users</u>

Håvard R. Karlsen, Ph.D.

Personal website

- JASP: Downloading, installing, and opening JASP
- Reading data into JASP
- Variables/Data transformations
 - (Re)Naming Variables
 - Setting levels of measurement
 - Computing (Recoding) new variables
- Selecting and filtering cases
- Example Analyses
 - Exploratory and Confirmatory Factor Analyses
 - Multigroup analyses and measurement invariance
 - Mediation modelling
 - Advanced modeling in JASP

What does JASP stand for?

In recognition of Bayesian pioneer Sir Harold Jeffreys, JASP stands for Jeffreys's Amazing Statistics Program. Frederick Anyan, Ph.D - NTNU

~

• JASP: Downloading, installing, and opening JASP

- 1. JASP: Downloading, installing, and opening JASP
 - https://jasp-stats.org/download/
 - > Windows
 - ➤ macOS
 - Installation guide: <u>https://jasp-stats.org/installation-guide/</u>
 - > Linux
- 2. Support, support and support materials...
 - How to use JASP: <u>Explanatory articles, videos and GIFs</u>
 - JASP Materials: <u>Manual, Online resources, Books, Papers, workshops, etc</u>
- 3. FAQS...?
 - <u>Here...</u>
- <u>Open Science Framework with JASP</u>

• JASP: Downloading, installing, and opening JASP

- JASP: Downloading, installing, and opening JASP
- Reading data into JASP
- Variables/Data transformations
 - (Re)Naming Variables
 - Setting levels of measurement
 - Computing (Recoding) new variables
- Selecting and filtering cases
- Example Analyses
 - Exploratory and Confirmatory Factor Analyses
 - Multigroup analyses and measurement invariance
 - Mediation modelling
 - Advanced modeling in JASP
 - Longitudinal/Growth models SEM

• Reading data into JASP

JASP currently reads the following formats: <u>.csv, .txt,</u> .tsv, .ods, <u>.dta, .sav,</u> .zsav, .por, .sas7bdat, .sas7bcat, .xpt and of course the <u>.jasp</u> format. • Reading data into JASP

• Reading data into JASP

- JASP: Downloading, installing, and opening JASP
- Reading data into JASP
- Variables/Data transformations
 - (Re)Naming Variables
 - Setting levels of measurement
 - Computing (Recoding) new variables
- Selecting and filtering cases
- Example Analyses
 - Exploratory and Confirmatory Factor Analyses
 - Multigroup analyses and measurement invariance
 - Mediation modelling
 - Advanced modeling in JASP
 - Longitudinal/Growth models SEM

- JASP: Downloading, installing, and opening JASP
- Reading data into JASP
- Variables/Data transformations
 - (Re)Naming Variables
 - Setting levels of measurement
 - Computing (Recoding) new variables
- Selecting and filtering cases
- Exploratory and Confirmatory Factor Analyses
 - Multigroup analyses and measurement invariance
- Mediation modelling
- Advanced modeling in JASP
 - Longitudinal/Growth models SEM

• Set level of measurement

- JASP: Downloading, installing, and opening JASP
- Reading data into JASP
- Variables/Data transformations
 - (Re)Naming Variables
 - Setting levels of measurement
 - Computing (Recoding) new variables
- Selecting and filtering cases
- Example Analyses
 - Exploratory and Confirmatory Factor Analyses
 - Multigroup analyses and measurement invariance
 - Mediation modelling
 - Advanced modeling in JASP
 - Longitudinal/Growth models SEM

Mean and sum

scores

N	Iean a sco	nd su res	m		Comp	ut
• •	•				Mental Ability	sex*
≡	Edit Data	Descriptives T-	Tests ANC	DVA Mixed	Models Reg a	ession
T	📏 V1	📏 id	🔒 sex	ageyr	📏 ager 🕂	
1	1	1	Females	13	1	
2	2	2	Males	13	7	
3	3	3	Males	13	1	
4	4	4	Females	13	2	0
5	5	5	Males	12	2	
6	6	6	Males	14	1	
7	7	7	Females	12	1	

Click compute

17 56522

19 0435

20 32609

18

6.65

5.25

4.85

5.35

5.25

5.75

5.444444

4.9166667

Mean and sum

scores

	Edit Data	Descriptives	T-Tests ANOVA	Mixed Models Regression	Freque
T	📏 x7	, x8	×9	f_x sum_visual +	
1	3.3913043	5.75	6.3611111	11.4583333	•
2	3.7826087	6.25	7.9166667	12.7083333	
3	3.2608696	3.9	4.4166667	11.625	
4	3	5.3	4.8611111	16.0833333	
5	3.6956522	6.3	5.9166667	10.4583333	
6	4.3478261	6.65	7.5	12.5833333	
7	4.6956522	6.2	4.8611111	9.8333333	
8	3.3913043	5.15	3.6666667	13.7916667	
9	4.5217391	4.65	7.3611111	11.75	
10	4.1304348	4.55	4.3611111	9.5	
11	3.7391304	5.7	4.3055556	11.4166667	
12	3.6956522	5.15	4.1388889	14.7083333	
13	5.8695652	5.2	5.8611111	14.2916667	
14	5.1304348	4.7	4.444444	13.25	
15	4	4.35	5.8611111	15.2083333	
16	4.0869565	3.8	5.1388889	11.7916667	
17	3.6956522	6.65	5.25	10.5833333	
18	4	5.25	5.444444	14	
19	3.9130435	4.85	5.75	14.9166667	
20	3.4782609	5.35	4.9166667	18.0833333	•
21	2.6086957	4.6	5.3888889	15.8333333	
22	4.4782609	5.45	7	19.2916667	
22	2 4702600	10	E	10.105	

• Computing/creating/Recoding new variables variable appears in the data pane

-	Edit	Data Des	criptives T-	∙Tests	ANOVA	Mixed Models	Regressi
т	×7	📏 x8	3	×9	\$ J	f_x sum_visual $ ight angle$	+
1	3043	5.75	6.36	11111			
2	26087	6.25	7.91	36667			
3)8696	3.9	4.41	66667			
4		5.3	4.86	11111			
5	56522	6.3	5.91	66667			
6	78261	6.65	7.5				
7	56522	6.2	4.86	11111			
8	3043	5.15	3.66	66667			
9	7391	4.65	7.36	11111			
10	4348	4.55	4.36	11111			
11	91304	5.7	4.30	55556			
12	56522	5.15	4.13	88889			
13	95652	5.2	5.86	11111			
14	4348	4.7	4.44	44444			
15		4.35	5.86	11111			
16	59565	3.8	5.13	88889			
17	56522	6.65	5.25				
18		5.25	5.44	44444			
19	0435	4.85	5.75				
20	32609	5.35	4.91	66667			

•••					Mental Ability sex*	(/Volumes/any	/an/Quant_Re	sources/0000 V	Vorks	sh
≡	Edit Data	Descriptives	T-Tests AN	IOVA Mixed	Models Regression	Frequencies	Factor	Distributions	Eq	Select
		- face of		and the state						wariahlar
Name:	sum_	visual	Description:	sum_visual				~		variables
Compute	type: Sc ad type: Comr	are with drag-and-r	trop V							
Comput	ed column defir	hition Missing Valu	es							
	ada		+-*÷/^٦	/% = ≠ <	$\leq > \geq \land \lor$	¬			, e	Apply function to create
x1	aue	(\ x1+	\ x2) + \ x3 ∠	6			-		H	nour romable in drag and
x 2	2					(ini i	σy		new variable in drag and
\$x3	3							Ο y Σv		drop constructor
- x 4	•		0	lick to compute	column			 ,		ar op constructor
R				Compute colu	imn			0		
				000						
T	ageyr	📏 agemo	ಿ school	grade	∕ ∖ x1			×3 🕂	4	Þ
1	13	1	Pasteur	7	3.3333333	7.75	0.075			
2	13	7	Pasteur	7	5.3333333	5.25	2.125			
3	13	1	Pasteur	7	4.5	5.25	1.875			
4	13	2	Pasteur	7	5.3333333	7.75	3			
5	12	2	Pasteur	7	4.8333333	4.75	0.875			Compute column to
6	14	1	Pasteur	7	5.3333333	5	2.25			
7	12	1	Pasteur	7	2.8333333	6	1			apply function
8	12	2	Pasteur	7	5.6666667	6.25	1.875		•	
9	13	0	Pasteur	7	4.5	5.75	1.5			
10	12	5	Pasteur	7	3.5	5.25	0.75			
11	12	2	Pasteur	7	3.6666667	5.75	2			
10	10	41	Destaur	7	E 0000000	0	2.075			

• •	•				
≡	Edit Data	Descriptives T-	Tests ANOVA	Mixed Models Regression	Freq
T	📏 x7	♦ ×8	📏 x9	f_x sum_visual +	
1	3.3913043	5.75	6.3611111	11.4583333	
2	3.7826087	6.25	7.9166667	12.7083333	
3	3.2608696	3.9	4.4166667	11.625	
4	3	5.3	4.8611111	16.0833333	2
5	3.6956522	6.3	5.9166667	10.4583333	
6	4.3478261	6.65	7.5	12.5833333	
7	4.6956522	6.2	4.8611111	9.8333333	
8	3.3913043	5.15	3.6666667	13.7916667	
9	4.5217391	4.65	7.3611111	11.75	
10	4.1304348	4.55	4.3611111	9.5	
11	3.7391304	5.7	4.3055556	11.4166667	
12	3.6956522	5.15	4.1388889	14.7083333	4
13	5.8695652	5.2	5.8611111	14.2916667	
14	5.1304348	4.7	4.444444	13.25	
15	4	4.35	5.8611111	15.2083333	
16	4.0869565	3.8	5.1388889	11.7916667	
17	3.6956522	6.65	5.25	10.5833333	
18	4	5.25	5.444444	14	
19	3.9130435	4.85	5.75	14.9166667	
20	3.4782609	5.35	4.9166667	18.0833333	
21	2.6086957	4.6	5.3888889	15.8333333	
22	4.4782609	5.45	7	19.2916667	
22	3 4703600	A 6	E	10.105	
				-	_

Try it for the mean of x1-x3

Logical values and numbers

Split sum_visual at the mean (mean = 13.27; ranges from 5.92 – 20.37)

Nominal text (string) (Low; High)

Ordinal (1 = Low, 2 = medium, 3 = High)

Split sum_visal at the mean (mean = 13.27; ranges from 5.92 - 20.37)

Split sum_visal at the mean (mean = 13.27; ranges from 5.92 - 20.37)

Split sum_visal into three (3) categories (mean = 13.27; SD = 2.63; ranges from 5.92 - 20.37)

- 5.92 10.00 = 1 (Low)
- 10.01 16.00 = 2 (Medium)
- 16.01 20.37 = 3 (High)

Name new variable and set level of measurement

Replace missing values

	ANOVA Mixe	d Models	Regression	Frequencies	Factor	Distribution
arC	> va 3.95833	+	 Descript 	ive Statistics	;	
	3.39583 2.75 3.20833	000	varA varB varC varD varE		₽	
	3.70833 3.0625	News	Create Compu	ted Column		
	3.66667 3.77083	Name:		رس)		
		Sca	le d'Ordinal Create Co	Nominal 🔥 Te	ext	•
arC	va 3.95833 3.39583 2.75 3.20833 3.20833 3.70833 3.66667 3.66667 3.77083	Name:	VarA varB varC varD varE VarE VarA varD varE Create Comput le Ordinal Create Com	ive Statistics	J2 ■xt ×	

- JASP: Downloading, installing, and opening JASP
- Reading data into JASP
- Variables/Data transformations
 - (Re)Naming Variables
 - Setting levels of measurement
 - Computing (Recoding) new variables
- Selecting and filtering cases
- Example Analyses
 - Exploratory and Confirmatory Factor Analyses
 - Multigroup analyses and measurement invariance
 - Mediation modelling
 - Advanced modeling in JASP
 - Longitudinal/Growth models SEM

Selecting and filtering cases

Use sum_visual_123Ord

- JASP: Downloading, installing, and opening JASP
- Reading data into JASP
- Variables/Data transformations
 - (Re)Naming Variables
 - Setting levels of measurement
 - Computing (Recoding) new variables
- Selecting and filtering cases
- Example Analyses
 - Principal Components and Exploratory
 - Confirmatory Factor Analyses
 - Multigroup analyses and measurement invariance
 - Mediation modelling
 - Advanced modeling in JASP
 - Longitudinal/Growth models SEM

• Principal Components Analysis

Total Variance Explained

		Initial Eig	envalu	es		Extraction	Sums of Squar	ed Loadings	Rotation Sums of Squared Loadings ^a
Component	Total	% of Variance Cumulative %			Total	% of Variance	Cumulative %	Total	
1	3,216	35	5,737		35,737	3,216	35,737	35,737	2,763
2	1,639	18	3,208		53,945	1,639	18,208	53,945	2,226
3	1,365	15	5,168		69,114	1,365	15,168	69,114	2,088
4	,699	7	,766		76,879				
5	,584	6	6,493		83,372				
6	,500	5	5,552		88,924				
7	,473	5	,257		94,181				
8	,286	3	3,178		97,359				
9	,238	2	2,641		100,000				

Component Characteristics 🔻

		Unrotated solution	1	Rotated solution			
Eigenvalue		Proportion var.	Cumulative	SumSq. Loadings	Proportion var.	Cumulative	
Component 1	3.216	0.357	0.357	2.502	0.278	0.278	
Component 2	1.639	0.182	0.539	1.899	0.211	0.489	
Component 3	1.365	0.152	0.691	1.819	0.202	0.691	

Extraction Method: Principal Component Analysis.

a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance.

• Exploratory Factor Analysis

Pattern Matrix^a

		Component	
	1	2	3
x5	,928		
x4	,902		
x6	.874		
х3		,804	
x2		,770	
x1		.648	
x7			,873
x8			,828,
x9			.596

Extraction Method: Principal Component Analysis. Rotation Method: Promax with Kaiser Normalization.

a. Rotation converged in 5 iterations.

Component Loadings 🔻

	RC1	RC2	RC3	Uniqueness
~5	0.930			0 175
x4	0.903			0.175
x6	0.875			0.207
x3		0.814		0.369
x2		0.774		0.455
x1		0.655		0.413
x7			0.876	0.278
x8			0.822	0.308
x9			0.581	0.389

Note. Applied rotation method is promax.

SPSS JASP

Component Correlation Matrix

Component	1	2	3
1	1,000	,303	,223
2	,303	1,000	,265
3	,223	,265	1,000

Extraction Method: Principal Component Analysis. Rotation Method: Promax with Kaiser Normalization.

Component Correlations **T**

	Component 1	Component 2	Component 3
Component 1	1.000	0.319	0.218
Component 2	0.319	1.000	0.274
Component 3	0.218	0.274	1.000

- JASP: Downloading, installing, and opening JASP
- Reading data into JASP
- Variables/Data transformations
 - (Re)Naming Variables
 - Setting levels of measurement
 - Computing (Recoding) new variables
- Selecting and filtering cases
- Example Analyses
 - Principal Components and Exploratory
 - Confirmatory Factor Analyses
 - Multigroup analyses and measurement invariance
 - Mediation modelling
 - Advanced modeling in JASP
 - Longitudinal/Growth models SEM

• Confirmatory Factor Analysis

30

MODEL FIT INFORMATION

Number of Free Parameters

Loglikelihood

HO Value -3737.745 H1 Value -3695.092

Information Criteria

Akaike (AIC)	7535.490
Bayesian (BIC)	7646.703
Sample-Size Adjusted BIC	7551.560
(n* = (n + 2) / 24)	

Chi-Square Test of Model Fit

Value		85.306
Degrees of	Freedom	24
P-Value		0.0000

RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.092	
90 Percent C.I.	0.071	0.114
Probability RMSEA <= .05	0.001	

CFI/TLI

CFI	0.931
TLI	0.896

Chi-Square Test of Model Fit for the Baseline Model

Value	918.852
Degrees of Freedom	36
P-Value	0.0000

SRMR (Standardized Root Mean Square Residual)

Value	0.060
-------	-------

Mplus JASP

Model fit 🔻

Chi-square test

Model	X ²	df	р
Baseline model	918.852	36	
Factor model	85.306	24	< .001
Note The estimate	ric MI		

Note. The estimator is ML

Additional fit measures *****

Fit indices

Index	Value
Comparative Fit Index (CFI)	0.931
Bentler-Bonett Non-normed Fit Index (NNFI)	0.896
Bentler-Bonett Normed Fit Index (NFI) Parsimony Normed Fit Index (PNFI)	0.907 0.605
Bollen's Relative Fit Index (RFI)	0.861
Relative Noncentrality Index (RNI)	0.931

Information criteria

	Value
Log–likelihood	-3737.745
Number of free parameters	30.000
Akaike (AIC)	7535.490
Bayesian (BIC)	7646.703
Sample-size adjusted Bayesian (SSABIC)	7551.560

Other fit measures **v**

Metric	Value
Root mean square error of approximation (RMSEA)	0.092
RMSEA 90% CI lower bound	0.071
RMSEA 90% CI upper bound	0.114
RMSEA p-value	6 612×10 ⁻⁴
Standardized root mean square residual (SRMR)	0.060
Hoeiter's critical in $(\alpha = .05)$	129.490
Hoelter's critical N ($\alpha = .01$)	152.654
Goodness of fit index (GFI)	0.996
McDonald fit index (MFI)	0.903
Expected cross validation index (ECVI)	0.483

• Confirmatory Factor Analysis

.47

- JASP: Downloading, installing, and opening JASP
- Reading data into JASP
- Variables/Data transformations
 - (Re)Naming Variables
 - Setting levels of measurement
 - Computing (Recoding) new variables
- Selecting and filtering cases
- Example Analyses
 - Principal Components and Exploratory
 - Confirmatory Factor Analyses
 - Multigroup analyses and measurement invariance
 - Mediation modelling
 - Advanced modeling in JASP
 - Longitudinal/Growth models SEM

MODEL RESULTS

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	• M	edi	iat
x3 on x1 x2	0.361 0.220	0.049 0.056	7.337 3.962	0.000			
X4 ON X1 X2	0.358 0.046	0.065 0.071	5.548 0.640	0.000			
X2 ON X1	0.300	0.057	5.262	0.000			IV
X4 WIT X3	H -0.020	0.058	-0.347	0.729			
CONFIDENCE	INTERVALS OF	TOTAL, TO	OTAL INDI	RECT, SPECIFI	C INDIRECT,	AND DIRECT	EFFECTS

Lower .5% Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5% Upper .5% Effects from X1 to X4 -0.051 -0.030 -0.023 0.014 0.044 0.051 0.066 Indirect Effects from X1 to X3 0.022 0.031 0.037 0.066 0.107 0.113 0.124 Indirect

Mediation modelling

		Path	coeffici	ents 🔻	,					
									95% Confide	ence Interva
Malua	TACD				Estimate	Std. Error	z-value	р	Lower	Upper
mpius	JASI	x2	→	x3	0.220	0.050	4,358	< .001	0.111	0.326
		x1	_→	x3	0.361	0.051	7.088	< .001	0.258	0.457
		×2	→	x4	0.046	0.055	0.825	0.409	-0.082	0.185
		x1	\rightarrow	х4	0.358	0.056	6.415	< .001	0.247	0.499
		x1	→	х2	0.300	0.056	5.403	< .001	0.195	0.418
Upper .5%	Indirect eff	Note. ML es iects	Delta i timato	method r.	standard erro	ors, bias-corre	cted percent	ile bootstr	ap confidence	intervals,
									95% Confiden	ice Interval
0.066					Estimate	Std. Error	z-value	р	Lower	Upper
	x1 -	→ x2	→	x3	0.066	0.019	3.392	< .001	0.032	0.115
0.124	x1 –	→ x2	\rightarrow	х4	0.014	0.017	0.816	0.414	-0.026	0.055
٦	Note. Delt	a method s	tandar	d error:	s, bias-correc	ed percentile I	bootstrap co	nfidence i	intervals, ML e	stimator.

- JASP: Downloading, installing, and opening JASP
- Reading data into JASP
- Variables/Data transformations
 - (Re)Naming Variables
 - Setting levels of measurement
 - Computing (Recoding) new variables
- Selecting and filtering cases
- Exploratory and Confirmatory Factor Analyses
 - Multigroup and measurement invariance testing
- Mediation modelling
- Advanced modeling in JASP
 - Longitudinal/Growth models SEM

Longitudinal Growth Models – SEM

MODEL FIT INFORMATION

Number of Free Parameters

12

Loglikelihood

10	Value	-7952.058
11	Value	-7866.567

Information Criteria

Akaike (AIC)	15928.116
Bayesian (BIC)	15986.164
Sample-Size Adjusted BIC	15948.053
(n* = (n + 2) / 24)	

Chi-Square Test of Model Fit

Value	170.982
Degrees of Freedom	23
P-Value	0.0000

RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.083	
90 Percent C.I.	0.072	0.095
Probability RMSEA <= .05	0.000	

CFI/TLI

CFI 0.8	
т.т. 0.8	24
	39

Chi-Square Test of Model Fit for the Baseline Model

Value			862.101
Degrees	of	Freedom	21
P-Value			0.0000

SRMR (Standardized Root Mean Square Residual)

Value	0.120

Mplus JASP

Additional Fit measures

Fit indices

/alue
0.824
0.839
0.839
0.878
0.823
0.824

Information criteria

Log–likelihood	-7952.058
Number of free parameters	12.000
Akaike (AIC)	15928.116
Bayesian (BIC)	15986.164
Sample-size adjusted Bayesian (SSABIC)	15948.053

Value

Other fit measures

Metric	Value
Root mean square error of approximation (RMSEA)	0.083
RMSEA 90%% CI lower bound	0.072
RMSEA 90%% CI upper bound	0.095
RMSEA p-value	1 598×10 ⁻⁶
Standardized root mean square residual (SRMR)	0.108
Hoelter's critical N ($\alpha = .05$)	192.460
Hoelter's critical N ($\alpha = .01$)	227.657
Goodness of fit index (GFI)	0.989
McDonald fit index (MFI)	0.924
Expected cross validation index (ECVI)	0.209

• Longitudinal Growth Models – SEM

Mplus JASP

S	WITH				
I		4.020	1.458	2.758	0.006
Means					
I		35.736	0.384	93.114	0.000
S		4.219	0.099	42.764	0.000

						95%% Confid	ence Interva
Component	Parameter	Estimate	Std. Error	z-value	р	Lower	Upper
Intercept	Variance	47.603	6.538	7.281	< .001	34.788	60.417
	Mean	35.737	0.384	93.113	< .001	34.984	36.489
Linear slope	Variance	0.031	0.419	0.074	0.941	-0.789	0.852
	Mean	4.219	0.099	42.763	< .001	4.025	4.412

	•	

Variances				
I	47.598	6.538	7.280	0.000
S	0.031	0.419	0.074	0.941

Residual Variances

MATH2	60.697	7.521	8.070	0.000
MATH3	50.842	5.025	10.118	0.000
MATH4	38.667	4.198	9.211	0.000
MATH5	27.675	3.664	7.554	0.000
MATH6	22.165	3.682	6.020	0.000
MATH7	32.152	6.168	5.212	0.000
MATH8	39.961	8.355	4.783	0.000

Latent covariances

							95%% Confidence Interva		
			Estimate	Std. Error	z-value	р	Lower	Upper	
Intercept	↔	Linear slope	4.019	1.458	2.757	0.006	1.162	6.877	

Residual variances

					95%% Confid	ence Interva
 Variable	Estimate	Std. Error	z-value	р	Lower	Upper
math2	60.694	7.521	8.070	< .001	45.954	75.434
math3	50.842	5.025	10.118	< .001	40.993	60.690
math4	38.666	4.198	9.211	< .001	30.439	46.894
math5	27.673	3.663	7.554	< .001	20.493	34.853
math6	22.166	3.682	6.020	< .001	14.949	29.382
math7	32.151	6.168	5.212	< .001	20.062	44.241
math8	39.956	8.354	4.783	< .001	23.583	56.330

• Longitudinal Growth Models – SEM

Mplus JASP

R-SQUARE

Observed				Two-Tailed
Variable	Estimate	S.E.	Est./S.E.	P-Value
MATH2	0.440	0.056	7.855	0.000
MATH3	0.523	0.038	13.893	0.000
MATH4	0.623	0.031	20.069	0.000
MATH5	0.722	0.030	24.464	0.000
MATH6	0.784	0.033	24.070	0.000
MATH7	0.734	0.043	17.031	0.000
MATH8	0.708	0.053	13.402	0.000

R-Squared •	
Variable	R ²
math2	0.440
math3	0.523
math4	0.623
math5	0.722
math6	0.784
math7	0.734
math8	0.708